Indian Statistical Institute Admission Test for B.Math/B.Stat 2016

May 8, 2016

$\mathbf{Q1}$

In a sports tournament of n players, each pair of players plays exactly one match against each other. There are no draws. Prove that the players can be arranged in an order $P_1, P_2, ..., P_n$, such that P_i defeats $P_{i+1} \forall i = 1, 2, ..., n-1$.

$\mathbf{Q2}$

Consider the polynomial $ax^3 + bx^2 + cx + d$, where *ad* is odd and *bc* is even. Prove that all roots of the polynomial cannot be rational.

$\mathbf{Q3}$

 $P(x) = x^n + a_1 x^{n-1} + \dots + a_n$ is a polynomial with real coefficients. $a_1^2 < a_2$. Prove that all roots of P(x) cannot be real.

$\mathbf{Q4}$

Let ABCD be a square. Let A lie on the positive x-axis and B on the positive y-axis. Suppose the vertex C lies in the first quadrant and has co-ordinates (u, v). Then find the area of the square in terms of u and v.

$\mathbf{Q5}$

Prove that there exists a right-angled triangle with rational sides and area d iff there exist rational numbers x, y, z such that x^2, y^2, z^2 are in arithmetic progression with common difference d.

https://ganitanweshan.wordpress.com

$\mathbf{Q6}$

Suppose in a $\triangle ABC$, A, B, C denote the three angles and a, b, c denote the three sides opposite to the corresponding angles. Prove that, if $sin (A - B) = \frac{a}{a+b} \sin A \cos B - \frac{b}{a+b} \sin B \cos A$, then $\triangle ABC$ is isosceles.

$\mathbf{Q7}$

f is a differentiable function, such that f(f(x))=x, where $x\in[0,1].$ Also, f(0)=1. Find the value of

$$\int_0^1 (x - f(x))^{2016} dx$$

$\mathbf{Q8}$

 $(a_n)_{n\geq 1}$ is a sequence of real numbers satisfying $a_{n+1} = \frac{3a_n}{2+a_n}$. (i) If $0 < a_1 < 1$, then prove that the sequence a_n is increasing and hence,

$$\lim_{n \to \infty} a_n = 1$$

(ii) If $a_1 > 1$, then prove that the sequence a_n is decreasing and hence,

$$\lim_{n \to \infty} a_n = 1$$