# Indian Statistical Institute Admission Test for B.Math/B.Stat 2016 

May 8, 2016

## Q1

In a sports tournament of $n$ players, each pair of players plays exactly one match against each other. There are no draws. Prove that the players can be arranged in an order $P_{1}, P_{2}, \ldots, P_{n}$, such that $P_{i}$ defeats $P_{i+1} \forall i=1,2, \ldots, n-1$.

## Q2

Consider the polynomial $a x^{3}+b x^{2}+c x+d$, where $a d$ is odd and $b c$ is even. Prove that all roots of the polynomial cannot be rational.

## Q3

$P(x)=x^{n}+a_{1} x^{n-1}+\ldots+a_{n}$ is a polynomial with real coefficients. $a_{1}^{2}<a_{2}$. Prove that all roots of $P(x)$ cannot be real.

## Q4

Let $A B C D$ be a square. Let $A$ lie on the positive $x$-axis and $B$ on the positive $y$-axis. Suppose the vertex $C$ lies in the first quadrant and has co-ordinates $(u, v)$. Then find the area of the square in terms of $u$ and $v$.

## Q5

Prove that there exists a right-angled triangle with rational sides and area $d$ iff there exist rational numbers $x, y, z$ such that $x^{2}, y^{2}, z^{2}$ are in arithmetic progression with common difference $d$.

## Q6

Suppose in a $\triangle A B C, A, B, C$ denote the three angles and $a, b, c$ denote the three sides opposite to the corresponding angles. Prove that, if $\sin (A-B)=$ $\frac{a}{a+b} \sin A \cos B-\frac{b}{a+b} \sin B \cos A$, then $\triangle A B C$ is isosceles.

## Q7

$f$ is a differentiable function, such that $f(f(x))=x$, where $x \in[0,1]$. Also, $f(0)=1$. Find the value of

$$
\int_{0}^{1}(x-f(x))^{2016} d x
$$

## Q8

$\left(a_{n}\right)_{n \geq 1}$ is a sequence of real numbers satisfying $a_{n+1}=\frac{3 a_{n}}{2+a_{n}}$.
(i) If $0<a_{1}<1$, then prove that the sequence $a_{n}$ is increasing and hence,

$$
\lim _{n \rightarrow \infty} a_{n}=1
$$

(ii) If $a_{1}>1$, then prove that the sequence $a_{n}$ is decreasing and hence,

$$
\lim _{n \rightarrow \infty} a_{n}=1
$$

