Indian Statistical Institute Admission Test for B.Math/B.Stat 2016 - Solved Paper

May 8, 2016

$\mathbf{Q1}$

In a sports tournament of n players, each pair of players plays exactly one match against each other. There are no draws. Prove that the players can be arranged in an order $P_1, P_2, ..., P_n$, such that P_i defeats $P_{i+1} \forall i = 1, 2, ..., n-1$.

Solution

We prove this by induction.

Consider two players A and B. If A defeats B, we define $P_1 = A$ and $P_2 = B$. Otherwise, $P_1 = B$ and $P_2 = A$.

Assume the statement for some k > 2 players.

Now, we prove the statement for k + 1 players. Take any k of these players. By the induction hypothesis, they can be arranged as $P_1, P_2, ..., P_k$ satisfying the given condition. Let the remaining player be Q. Let i be the least index such that Q defeats P_i . If i = 1, place Q before P_1 and relabel. Otherwise, check if Q is defeated by P_{i-1} . If so, then place Q between P_{i-1} and P_i and relabel. If not, look at the next i such that Q defeats P_i and check the same. If no such i exists, then P_k defeats Q and we can place Q at the end and relabel.

$\mathbf{Q2}$

Consider the polynomial $ax^3 + bx^2 + cx + d$, where *ad* is odd and *bc* is even. Prove that all roots of the polynomial cannot be rational.

Solution

Let the roots α_1 , α_2 , α_3 be rational. We write them as $\alpha_i = \frac{p_i}{q_i}$ (in least terms), i = 1, 2, 3. Then,

$$a\alpha_i^3 + b\alpha_i^2 + c\alpha_i + d = 0$$

$$\Rightarrow ap_i^3 + bp_i^2q_i + cp_iq_i^2 + dq_i^3 = 0$$

$$\Rightarrow ap_i^3 = -q_i(bp_i^2 + cp_iq_i + dq_i^2)$$

 $\Rightarrow q_i | a p_i^3$. But, $gcd(p_i, q_i) = 1$. Hence, $q_i | a \Rightarrow q_i | a d \Rightarrow q_i$ is odd, since ad is odd. Similarly, $p_i | d \Rightarrow p_i | a d \Rightarrow p_i$ is odd. Now, $\alpha_1 + \alpha_2 + \alpha_3 = -\frac{b}{a}$. Hence,

$$b = -\frac{a}{q_1 q_2 q_3} (p_1 q_2 q_3 + p_2 q_1 q_3 + p_3 q_1 q_2)$$

But, p_i and q_i are all odd $\Rightarrow p_1q_2q_3 + p_2q_1q_3 + p_3q_1q_2$ is odd. Also, *ad* is odd $\Rightarrow a$ is odd $\Rightarrow b$ is odd.

Similarly,

$$\alpha_1 \alpha_2 + \alpha_2 \alpha_3 + \alpha_3 \alpha_1 = \frac{c}{a}$$

$$\Rightarrow c = \frac{a}{q_1 q_2 q_3} (p_1 p_2 q_3 + p_2 p_3 q_1 + p_3 p_1 q_2)$$

Then, c is odd $\Rightarrow bc$ is odd. Contradiction.

=

$\mathbf{Q3}$

 $P(x) = x^n + a_1 x^{n-1} + \dots + a_n$ is a polynomial with real coefficients. $a_1^2 < a_2$. Prove that all roots of P(x) cannot be real.

Solution

Suppose P(x) has all n roots real then $P^{(1)}(x)$ has only (n-1) real roots. [By Rolle's Theorem $P^{(1)}(x)$ has a real root between two roots of P(x)] Then the $(n-2)^{th}$ derivative of P(x), $P^{(n-2)}(x)$, has two real roots.

$$P^{(n-2)}(x) = \frac{n!}{2}x^2 + (n-1)!a_1x + (n-2)!a_2$$

Then the discriminant,

$$((n-1)!a_1)^2 - \frac{4n!}{2}(n-2)!a_2 = (n-1)!(n-2)!((n-1)a_1^2 - 2na_2)$$

is positive. So, we have $a_1^2 < a_2 \Rightarrow (n-1)a_1^2 < (n-1)a_2 < 2na_2$ This implies that the discriminant of $P^{(n-2)}(x)$ is negative. Contradiction.

https://ganitanweshan.wordpress.com

$\mathbf{Q4}$

Let ABCD be a square. Let A lie on the positive x-axis and B on the positive y-axis. Suppose the vertex C lies in the first quadrant and has co-ordinates (u, v). Then find the area of the square in terms of u and v.

Solution

Draw a perpendicular line CP to the y-axis. Let $\angle OAB = \theta \Rightarrow \angle PBC = \theta$ Let $AB = BC = a \Rightarrow BP = a \cos \theta$, $PC = a \sin \theta$ Let $A \equiv (x, 0), B \equiv (0, y)$ So, $OB = a \sin \theta = y$, $OA = a \cos \theta = x$ $u = CP = a \sin \theta = y$, $v = OP = OB + BP = y + a \cos \theta = y + x$ Hence the area of the square is $a^2 = x^2 + y^2 = u^2 + (v - u)^2$.

$\mathbf{Q5}$

Prove that there exists a right-angled triangle with rational sides and area d iff there exist rational numbers x, y, z such that x^2, y^2, z^2 are in arithmetic progression with common difference d.

Solution

(⇒) Let \triangle be a right-angled triangle with rational sides a, b, c and $a^2 + b^2 = c^2$. Area of \triangle is $d = \frac{ab}{2}$ Let $x = \frac{a-b}{2}, y = \frac{c}{2}, z = \frac{a+b}{2}$ The,

$$y^{2} - x^{2} = \frac{c^{2}}{4} - \frac{(a-b)^{2}}{4} = \frac{c^{2} - a^{2} - b^{2} + 2ab}{4} = \frac{ab}{2} = d$$

$$\Rightarrow z^{2} - y^{2} = \frac{(a+b)^{2}}{4} - \frac{c^{2}}{4} = \frac{a^{2} + b^{2} + 2ab - c^{2}}{4} = \frac{ab}{2} = d$$

Hence x^2 , y^2 , z^2 are in A.P. with common difference d.

(\Leftarrow) x^2, y^2, z^2 are in A.P. with common difference d. So, $d = y^2 - x^2 = z^2 - y^2$ and $x^2 + z^2 = 2y^2$. Let a = x + z, b = z - x, c = 2yThen, $x^2 + b^2 = (z + x)^2 + (z - x)^2 = 2(x^2 + z^2) = 4x^2$

$$a^{2} + b^{2} = (z + x)^{2} + (z - x)^{2} = 2(x^{2} + z^{2}) = 4y^{2} = c^{2}$$

This implies that a,b,c are sides of a right-angled triangle. So, the area of the triangle is

$$\frac{ab}{2} = \frac{(z+x)(z-x)}{2} = \frac{z^2 - x^2}{2} = \frac{z^2 - y^2 + y^2 - x^2}{2} = \frac{2d}{2} = d$$

-	-	

$\mathbf{Q6}$

Suppose in a $\triangle ABC$, A, B, C denote the three angles and a, b, c denote the three sides opposite to the corresponding angles. Prove that, if $sin (A - B) = \frac{a}{a+b} \sin A \cos B - \frac{b}{a+b} \sin B \cos A$, then $\triangle ABC$ is isosceles.

Solution

$$\sin (A - B) = \frac{a}{a+b} \sin A \cos B - \frac{b}{a+b} \sin B \cos A$$

$$\Rightarrow \sin A \cos B - \sin B \cos A = \frac{a}{a+b} \sin A \cos B - \frac{b}{a+b} \sin B \cos A$$

$$\Rightarrow \left(1 - \frac{a}{a+b}\right) \sin A \cos B = \left(1 - \frac{b}{a+b}\right) \sin B \cos A$$

$$\Rightarrow \frac{a}{a+b} \sin A \cos B = \frac{b}{a+b} \sin B \cos A$$

$$\Rightarrow \left(\frac{b}{\sin B}\right) \cos B = \left(\frac{a}{\sin A}\right) \cos A$$

We know

$$\frac{b}{\sin B} = \frac{a}{\sin A}$$

Hence, $\cos B = \cos A \Rightarrow$ either A = B or $A + B = 2\pi$ The latter is not possible as $A + B < \pi$. Hence A = B. So $\triangle ABC$ is isosceles.

$\mathbf{Q7}$

f is a differentiable function, such that f(f(x))=x, where $x\in[0,1].$ Also, f(0)=1. Find the value of

$$\int_0^1 (x - f(x))^{2016} dx$$

Solution

Let

$$I = \int_0^1 (x - f(x))^{2016} dx$$

Let y = f(x), $f(f(x)) = x \Rightarrow f'(f(x))f'(x) = 1 \Rightarrow f'(x) = \frac{1}{f'(y)}$ Then, $dy = f'(x)dx \Rightarrow f'(y)dy = dx$ and f(0) = 1, $f(f(0)) = 0 \Rightarrow f(1) = 0$ Now,

$$I = \int_0^1 (x - f(x))^{2016} dx = \int_1^0 (f(y) - y)^{2016} f'(y) dy$$

$$= \int_{1}^{0} (f(y) - y)^{2016} (f'(y) - 1) dy - I$$

$$2I = \int_{1}^{0} (f(y) - y)^{2016} (f'(y) - 1) dy$$

let z = f(y) - y, $\Rightarrow dz = (f'(y) - 1)dy \begin{cases} y = 0, z = 1\\ y = 1, z = -1 \end{cases}$ $2I = \int_{-1}^{1} z^{2016} dz$

 $I = \frac{1}{2 \cdot 2017} \left[z^{2017} \right]_{-1}^1 = \frac{2}{2 \cdot 2017} = \frac{1}{2017}.$

$\mathbf{Q8}$

 $(a_n)_{n\geq 1}$ is a sequence of real numbers satisfying $a_{n+1} = \frac{3a_n}{2+a_n}$. (i) If $0 < a_1 < 1$, then prove that the sequence a_n is increasing and hence,

$$\lim_{n \to \infty} a_n = 1$$

(ii) If $a_1 > 1$, then prove that the sequence a_n is decreasing and hence,

$$\lim_{n \to \infty} a_n = 1$$

Solution

(i). We have $0 < a_1 < 1$ and $a_{n+1} = \frac{3a_n}{2+a_n} \dots (*)$

$$\frac{a_{n+1}}{a_n} = \frac{3}{2+a_n}$$

 $\begin{array}{l} 0 < a_1 < 1 \Rightarrow 2 + a_1 < 3\\ \text{For } n = 1, \frac{a_2}{a_1} = \frac{3}{2+a_1} > 1 \Rightarrow a_2 > a_1 > 0.\\ \text{Now } a_2 = \frac{3a_1}{2+a_1} \Rightarrow a_1 = \frac{2a_2}{3-a_2}\\ 0 < a_1 < 1 \Rightarrow 0 < \frac{2a_2}{3-a_2} < 1 \dots (**)\\ \text{Now consider } 0 < \frac{2a_2}{3-a_2} \Rightarrow 3 - a_2 > 0 \text{ since } a_2 > 0\\ \text{From } (**) \text{ we get} \end{array}$

$$\frac{2a_2}{3-a_2} < 1 \Rightarrow 2a_2 < 3-a_2 \Rightarrow 3a_2 < 3 \Rightarrow a_2 < 1$$

So, we get $0 < a_2 < 1$

By similar argument we can show $a_3 > a_2 > 0$ and $0 < a_3 < 1$ and so on. So, we get $(a_n)_{n \ge 1}$, an increasing sequence and $0 < a_n < 1 \ \forall n \ge 1$ so bounded. $\Rightarrow (a_n)_{n > 1}$ has a limit. Let

$$a = \lim_{n \to \infty} a_n = \lim_{n \to \infty} a_{n+1}$$

Taking limit of both sides of (*) we get

$$\lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \frac{3a_n}{2+a_n}$$
$$\Rightarrow a = \frac{3a}{2+a}$$
$$\Rightarrow a^2 - a = 0$$

$\Rightarrow a = 1 \ or \ 0$

 $(a_n)_{n\geq 1}$, an increasing sequence and $a_n>0$ hence $\mathbf{a}\neq 0\Rightarrow \lim_{n\rightarrow\infty}a_n=a=1.$

(ii). We have

$$a_1 > 1 \Rightarrow 2 + a_1 > 3 \Rightarrow 1 > \frac{3}{2 + a_1} = \frac{a_2}{a_1} \Rightarrow a_2 < a_1$$

since $a_1 > 1 \Rightarrow 1 > \frac{1}{a_1}$

$$\Rightarrow 3 > \frac{2}{a_1} + 1 \Rightarrow \frac{3}{\frac{2}{a_1} + 1} > 1$$

Hence

$$a_2 = \frac{3a_1}{2+a_1} = \frac{3}{\frac{2}{a_1}+1} > 1$$

Similarly we can show $a_n > 1 \ \forall \ n \ge 1$ and $(a_n)_{n \ge 1}$, a decreasing sequence having lower bound 1. $\Rightarrow (a_n)_{n \ge 1}$ has a limit.

let

$$a = \lim_{n \to \infty} a_n = \lim_{n \to \infty} a_{n+1}$$

Taking limit of both sides of (*) we get

$$\lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \frac{3a_n}{2+a_n}$$
$$\Rightarrow a = \frac{3a}{2+a}$$
$$\Rightarrow a^2 - a = 0$$
$$\Rightarrow a = 1 \text{ or } 0$$

Since $a_n > 1 \ \forall \ n \ge 1$, $a \ne 0 \Rightarrow \lim_{n \to \infty} a_n = a = 1$.

https://ganitanweshan.wordpress.com