# Indian Statistical Institute Admission Test for B.Math/B.Stat 2016 - Solved Paper 

May 8, 2016

## Q1

In a sports tournament of $n$ players, each pair of players plays exactly one match against each other. There are no draws. Prove that the players can be arranged in an order $P_{1}, P_{2}, \ldots, P_{n}$, such that $P_{i}$ defeats $P_{i+1} \forall i=1,2, \ldots, n-1$.

## Solution

We prove this by induction.
Consider two players $A$ and $B$. If $A$ defeats $B$, we define $P_{1}=A$ and $P_{2}=B$. Otherwise, $P_{1}=B$ and $P_{2}=A$.
Assume the statement for some $k>2$ players.
Now, we prove the statement for $k+1$ players. Take any $k$ of these players. By the induction hypothesis, they can be arranged as $P_{1}, P_{2}, \ldots, P_{k}$ satisfying the given condition. Let the remaining player be $Q$. Let $i$ be the least index such that $Q$ defeats $P_{i}$. If $i=1$, place $Q$ before $P_{1}$ and relabel. Otherwise, check if $Q$ is defeated by $P_{i-1}$. If so, then place $Q$ between $P_{i-1}$ and $P_{i}$ and relabel. If not, look at the next $i$ such that $Q$ defeats $P_{i}$ and check the same. If no such $i$ exists, then $P_{k}$ defeats $Q$ and we can place $Q$ at the end and relabel.

## Q2

Consider the polynomial $a x^{3}+b x^{2}+c x+d$, where $a d$ is odd and $b c$ is even. Prove that all roots of the polynomial cannot be rational.

## Solution

Let the roots $\alpha_{1}, \alpha_{2}, \alpha_{3}$ be rational. We write them as $\alpha_{i}=\frac{p_{i}}{q_{i}}$ (in least terms), $i=1,2,3$. Then,

$$
\begin{gathered}
a \alpha_{i}^{3}+b \alpha_{i}^{2}+c \alpha_{i}+d=0 \\
\Rightarrow a p_{i}^{3}+b p_{i}^{2} q_{i}+c p_{i} q_{i}^{2}+d q_{i}^{3}=0 \\
\Rightarrow a p_{i}^{3}=-q_{i}\left(b p_{i}^{2}+c p_{i} q_{i}+d q_{i}^{2}\right)
\end{gathered}
$$

$\Rightarrow q_{i} \mid a p_{i}^{3}$. But, $\operatorname{gcd}\left(p_{i}, q_{i}\right)=1$. Hence, $q_{i}\left|a \Rightarrow q_{i}\right| a d \Rightarrow q_{i}$ is odd, since $a d$ is odd. Similarly, $p_{i}\left|d \Rightarrow p_{i}\right| a d \Rightarrow p_{i}$ is odd. Now, $\alpha_{1}+\alpha_{2}+\alpha_{3}=-\frac{b}{a}$. Hence,

$$
b=-\frac{a}{q_{1} q_{2} q_{3}}\left(p_{1} q_{2} q_{3}+p_{2} q_{1} q_{3}+p_{3} q_{1} q_{2}\right)
$$

But, $p_{i}$ and $q_{i}$ are all odd $\Rightarrow p_{1} q_{2} q_{3}+p_{2} q_{1} q_{3}+p_{3} q_{1} q_{2}$ is odd. Also, $a d$ is odd $\Rightarrow a$ is odd $\Rightarrow b$ is odd.
Similarly,

$$
\begin{gathered}
\alpha_{1} \alpha_{2}+\alpha_{2} \alpha_{3}+\alpha_{3} \alpha_{1}=\frac{c}{a} \\
\Rightarrow c=\frac{a}{q_{1} q_{2} q_{3}}\left(p_{1} p_{2} q_{3}+p_{2} p_{3} q_{1}+p_{3} p_{1} q_{2}\right)
\end{gathered}
$$

Then, $c$ is odd $\Rightarrow b c$ is odd. Contradiction.

## Q3

$P(x)=x^{n}+a_{1} x^{n-1}+\ldots+a_{n}$ is a polynomial with real coefficients. $a_{1}^{2}<a_{2}$. Prove that all roots of $P(x)$ cannot be real.

## Solution

Suppose $\mathrm{P}(\mathrm{x})$ has all n roots real then $P^{(1)}(x)$ has only ( $\mathrm{n}-1$ ) real roots. [By Rolle's Theorem $P^{(1)}(x)$ has a real root between two roots of $\mathrm{P}(\mathrm{x})$ ]
Then the $(n-2)^{t h}$ derivative of $P(x), P^{(n-2)}(x)$, has two real roots.

$$
P^{(n-2)}(x)=\frac{n!}{2} x^{2}+(n-1)!a_{1} x+(n-2)!a_{2}
$$

Then the discriminant,

$$
\left((n-1)!a_{1}\right)^{2}-\frac{4 n!}{2}(n-2)!a_{2}=(n-1)!(n-2)!\left((n-1) a_{1}^{2}-2 n a_{2}\right)
$$

is positive. So, we have $a_{1}^{2}<a_{2} \Rightarrow(n-1) a_{1}^{2}<(n-1) a_{2}<2 n a_{2}$
This implies that the discriminant of $P^{(n-2)}(x)$ is negative. Contradiction.

## Q4

Let $A B C D$ be a square. Let $A$ lie on the positive $x$-axis and $B$ on the positive $y$-axis. Suppose the vertex $C$ lies in the first quadrant and has co-ordinates $(u, v)$. Then find the area of the square in terms of $u$ and $v$.

## Solution



Draw a perpendicular line $C P$ to the $y$-axis.
Let $\angle O A B=\theta \Rightarrow \angle P B C=\theta$
Let $A B=B C=a \Rightarrow B P=a \cos \theta, P C=a \sin \theta$
Let $A \equiv(x, 0), B \equiv(0, y)$
So, $O B=a \sin \theta=y, O A=a \cos \theta=x$
$u=C P=a \sin \theta=y, v=O P=O B+B P=y+a \cos \theta=y+x$
Hence the area of the square is $a^{2}=x^{2}+y^{2}=u^{2}+(v-u)^{2}$.

## Q5

Prove that there exists a right-angled triangle with rational sides and area $d$ iff there exist rational numbers $x, y, z$ such that $x^{2}, y^{2}, z^{2}$ are in arithmetic progression with common difference $d$.

## Solution

$(\Rightarrow)$
Let $\triangle$ be a right-angled triangle with rational sides $a, b, c$ and $a^{2}+b^{2}=c^{2}$.
Area of $\triangle$ is $d=\frac{a b}{2}$
Let $x=\frac{a-b}{2}, y=\frac{c}{2}, z=\frac{a+b}{2}$
The,

$$
\begin{aligned}
& y^{2}-x^{2}=\frac{c^{2}}{4}-\frac{(a-b)^{2}}{4}=\frac{c^{2}-a^{2}-b^{2}+2 a b}{4}=\frac{a b}{2}=d \\
\Rightarrow & z^{2}-y^{2}=\frac{(a+b)^{2}}{4}-\frac{c^{2}}{4}=\frac{a^{2}+b^{2}+2 a b-c^{2}}{4}=\frac{a b}{2}=d
\end{aligned}
$$

Hence $x^{2}, y^{2}, z^{2}$ are in A.P. with common difference $d$.
$(\Leftarrow)$
$x^{2}, y^{2}, z^{2}$ are in A.P. with common difference $d$.
So, $d=y^{2}-x^{2}=z^{2}-y^{2}$ and $x^{2}+z^{2}=2 y^{2}$
. Let $a=x+z, b=z-x, c=2 y$
Then,

$$
a^{2}+b^{2}=(z+x)^{2}+(z-x)^{2}=2\left(x^{2}+z^{2}\right)=4 y^{2}=c^{2}
$$

This implies that a,b,c are sides of a right-angled triangle.
So, the area of the triangle is

$$
\frac{a b}{2}=\frac{(z+x)(z-x)}{2}=\frac{z^{2}-x^{2}}{2}=\frac{z^{2}-y^{2}+y^{2}-x^{2}}{2}=\frac{2 d}{2}=d
$$

## Q6

Suppose in a $\triangle A B C, A, B, C$ denote the three angles and $a, b, c$ denote the three sides opposite to the corresponding angles. Prove that, if $\sin (A-B)=$ $\frac{a}{a+b} \sin A \cos B-\frac{b}{a+b} \sin B \cos A$, then $\triangle A B C$ is isosceles.

## Solution

$$
\begin{gathered}
\sin (A-B)=\frac{a}{a+b} \sin A \cos B-\frac{b}{a+b} \sin B \cos A \\
\Rightarrow \sin A \cos B-\sin B \cos A=\frac{a}{a+b} \sin A \cos B-\frac{b}{a+b} \sin B \cos A \\
\Rightarrow\left(1-\frac{a}{a+b}\right) \sin A \cos B=\left(1-\frac{b}{a+b}\right) \sin B \cos A \\
\Rightarrow \frac{a}{a+b} \sin A \cos B=\frac{b}{a+b} \sin B \cos A
\end{gathered}
$$

https://ganitanweshan.wordpress.com

$$
\Rightarrow\left(\frac{b}{\sin B}\right) \cos B=\left(\frac{a}{\sin A}\right) \cos A
$$

We know

$$
\frac{b}{\sin B}=\frac{a}{\sin A}
$$

Hence, $\cos B=\cos A \Rightarrow$ either $A=B$ or $A+B=2 \pi$ The latter is not possible as $A+B<\pi$. Hence $A=B$. So $\triangle A B C$ is isosceles.

## Q7

$f$ is a differentiable function, such that $f(f(x))=x$, where $x \in[0,1]$. Also, $f(0)=1$. Find the value of

$$
\int_{0}^{1}(x-f(x))^{2016} d x
$$

## Solution

Let

$$
I=\int_{0}^{1}(x-f(x))^{2016} d x
$$

Let $y=f(x), f(f(x))=x \Rightarrow f^{\prime}(f(x)) f^{\prime}(x)=1 \Rightarrow f^{\prime}(x)=\frac{1}{f^{\prime}(y)}$ Then, $d y=f^{\prime}(x) d x \Rightarrow f^{\prime}(y) d y=d x$ and $f(0)=1, f(f(0))=0 \Rightarrow f(1)=0$
Now,

$$
\begin{gathered}
I=\int_{0}^{1}(x-f(x))^{2016} d x=\int_{1}^{0}(f(y)-y)^{2016} f^{\prime}(y) d y \\
=\int_{1}^{0}(f(y)-y)^{2016}\left(f^{\prime}(y)-1\right) d y-I \\
2 I=\int_{1}^{0}(f(y)-y)^{2016}\left(f^{\prime}(y)-1\right) d y \\
\text { let } z=f(y)-y, \Rightarrow d z=\left(f^{\prime}(y)-1\right) d y\left\{\begin{array}{l}
y=0, z=1 \\
y=1, z=-1
\end{array}\right. \\
\qquad 2 I=\int_{-1}^{1} z^{2016} d z \\
I=\frac{1}{2 \cdot 2017}\left[z^{2017}\right]_{-1}^{1}=\frac{2}{2 \cdot 2017}=\frac{1}{2017} .
\end{gathered}
$$

## Q8

$\left(a_{n}\right)_{n \geq 1}$ is a sequence of real numbers satisfying $a_{n+1}=\frac{3 a_{n}}{2+a_{n}}$.
(i) If $0<a_{1}<1$, then prove that the sequence $a_{n}$ is increasing and hence,

$$
\lim _{n \rightarrow \infty} a_{n}=1
$$

(ii) If $a_{1}>1$, then prove that the sequence $a_{n}$ is decreasing and hence,

$$
\lim _{n \rightarrow \infty} a_{n}=1
$$

## Solution

(i). We have $0<a_{1}<1$ and $a_{n+1}=\frac{3 a_{n}}{2+a_{n}} \ldots(*)$

$$
\frac{a_{n+1}}{a_{n}}=\frac{3}{2+a_{n}}
$$

$0<a_{1}<1 \Rightarrow 2+a_{1}<3$
For $n=1, \frac{a_{2}}{a_{1}}=\frac{3}{2+a_{1}}>1 \Rightarrow a_{2}>a_{1}>0$.
Now $a_{2}=\frac{3 a_{1}}{2+a_{1}} \Rightarrow a_{1}=\frac{2 a_{2}}{3-a_{2}}$
$0<a_{1}<1 \Rightarrow 0<\frac{2 a_{2}}{3-a_{2}}<1 \ldots\left(^{* *}\right)$
Now consider $0<\frac{2 a_{2}}{3-a_{2}} \Rightarrow 3-a_{2}>0$ since $a_{2}>0$
From $\left({ }^{* *}\right)$ we get

$$
\frac{2 a_{2}}{3-a_{2}}<1 \Rightarrow 2 a_{2}<3-a_{2} \Rightarrow 3 a_{2}<3 \Rightarrow a_{2}<1
$$

So, we get $0<a_{2}<1$
By similar argument we can show $a_{3}>a_{2}>0$ and $0<a_{3}<1$ and so on.
So, we get $\left(a_{n}\right)_{n>1}$, an increasing sequence and $0<a_{n}<1 \forall n \geq 1$ so bounded. $\Rightarrow\left(a_{n}\right)_{n \geq 1}$ has a limit. Let

$$
a=\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} a_{n+1}
$$

Taking limit of both sides of $(*)$ we get

$$
\begin{gathered}
\lim _{n \rightarrow \infty} a_{n+1}=\lim _{n \rightarrow \infty} \frac{3 a_{n}}{2+a_{n}} \\
\Rightarrow a=\frac{3 a}{2+a} \\
\Rightarrow a^{2}-a=0
\end{gathered}
$$

$$
\Rightarrow a=1 \text { or } 0
$$

$\left(a_{n}\right)_{n \geq 1}$, an increasing sequence and $a_{n}>0$ hence $\mathrm{a} \neq 0 \Rightarrow \lim _{n \rightarrow \infty} a_{n}=a=1$.
(ii). We have

$$
a_{1}>1 \Rightarrow 2+a_{1}>3 \Rightarrow 1>\frac{3}{2+a_{1}}=\frac{a_{2}}{a_{1}} \Rightarrow a_{2}<a_{1}
$$

since $a_{1}>1 \Rightarrow 1>\frac{1}{a_{1}}$

$$
\Rightarrow 3>\frac{2}{a_{1}}+1 \Rightarrow \frac{3}{\frac{2}{a_{1}}+1}>1
$$

Hence

$$
a_{2}=\frac{3 a_{1}}{2+a_{1}}=\frac{3}{\frac{2}{a_{1}}+1}>1
$$

Similarly we can show $a_{n}>1 \forall n \geq 1$ and $\left(a_{n}\right)_{n \geq 1}$, a decreasing sequence having lower bound 1 .
$\Rightarrow\left(a_{n}\right)_{n \geq 1}$ has a limit .
let

$$
a=\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} a_{n+1}
$$

Taking limit of both sides of $\left(^{*}\right)$ we get

$$
\begin{gathered}
\lim _{n \rightarrow \infty} a_{n+1}=\lim _{n \rightarrow \infty} \frac{3 a_{n}}{2+a_{n}} \\
\Rightarrow a=\frac{3 a}{2+a} \\
\Rightarrow a^{2}-a=0 \\
\Rightarrow a=1 \text { or } 0
\end{gathered}
$$

Since $a_{n}>1 \forall n \geq 1, a \neq 0 \Rightarrow \lim _{n \rightarrow \infty} a_{n}=a=1$.

